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Square root relaxation: two possible mechanisms
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Abstract. Magnetic relaxation in large spin molecular paramagnets is often found to behave as δM(t) ∼ √
t

at short times t. This behaviour was explained by Prokofiev & Stamp as arising from dipole interactions
between molecular spins. However, as observed by Miyashita & Saito, the same behaviour can arise from a
different mechanism which, in the present work, is related to hyperfine interactions. The Miyashita-Saito
scheme is found to be possible at short times if the nuclear longitudinal spin relaxation is very slow. In the
case of moderately slow nuclear spin relaxation, the electronic magnetization variation δM(t) is initially
proportional to t, then to

√
t and finally to exp(−t/τ ). This behaviour may be mostly expected in dilute

systems.

PACS. 05.30.-d Quantum statistical mechanics – 05.40.Fb Random walks and Levy flights – 75.50.Xx
Molecular magnets

1 Introduction

Synthetic molecular nanomagnets [1] provide reproducible
microscopic systems with a large magnetic moment which
may have macroscopic properties. The most widely stud-
ied materials are, in the usual terminology, Mn12ac (with
a relaxation time of 2 months for the magnetization at
2 K) and Fe8, whose faster relaxation allows easier exper-
iments.

Magnetic relaxation of these materials at low temper-
ature is a challenging problem. The material is initially
magnetized by a strong magnetic field H− in the easy
magnetization direction z. At t = 0, the external field is
suddenly given the value Hext, also in the z direction. One
measures the magnetization Mz(t) = Mz(0) + δMz(t). At
low enough temperature, the following behaviour is ob-
served for short times in Fe8 [2,3] and Mn12 [4,5]

δMz(t) = δMz(∞)A
√

t (1)

where A is a positive constant. This square root be-
haviour is in contrast with usual relaxation which is ex-
ponential, and therefore linear for short times, δMz(t) =
δMz(∞)A′t.

The square root behaviour (1) was predicted theoreti-
cally by Prokofiev and Stamp [6] for the demagnetization
of a saturated sample. The molecule of interest can be
modelled by a ‘molecular’ spin S, of electronic nature,
whose modulus s is large (s = 10 for Mn12 and Fe8).
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This spin is subject to an anisotropy hamiltonian which,
in Mn12, may be written as a first approximation as

H0 = −KS2
z (2)

where the constant K is positive.
Relaxation is slow because positive and negative val-

ues of Sz form two different potential wells separated by a
barrier of height Ks2. At temperatures and fields of inter-
est (kBT � Ks2 and gµBsHext � Ks2 where µB is the
Bohr magneton and g the Landé factor), thermal activa-
tion by phonon absorption is not possible and magnetic
relaxation takes place by spin tunneling through the bar-
rier under the effect of additional terms of the Hamiltonian
which do not commute with Sz. Such a hamiltonian, ade-
quate for Fe8, is H = H0+H1 = −KS2

z +gµBHzSz+BS2
x,

where the magnetic field H has been introduced.
If H were constant, spin tunneling would be a peri-

odic oscillation of Sz between −s and s, which could be
analyzed by diagonalization of the hamiltonian. In the re-
laxation mechanism, the environment plays an essential
part. It will be mimicked for each molecular spin by a
time-dependent magnetic field Hz(t) = Hext + ∆Hz(t).
The additional component ∆Hz(t) is produced partly by
the dipole interaction with the other molecular spins,
and partly by the ‘hyperfine’ interaction with the nuclear
spins. The transverse components ∆Hx and ∆Hy , which
slightly modulate the tunnel splitting 2�ωT , will be ne-
glected. The z-component ∆Hz , though not larger, is very
important. Indeed, spin tunneling is only possible between
two eigenstates of equation (2) which have nearly the same
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energy. This occurs if, and only if the local longitudinal
field Hz is close to 0 or to particular values (or ‘reso-
nances’) which depend on K. Attention will be focussed
on one of these values which will be called H1. Roughly
speaking, the condition for tunneling is that Hz satisfies
gµBs|Hz − H1| < �ωT .

Prokofiev and Stamp [6] have shown that the dipole
interaction with the other molecular spins leads to square
root relaxation, formula (1). In their theory, this is re-
lated to the r−3 behaviour of dipole interactions. It was
later suggested by Miyashita and Saito [7] that square root
relaxation may follow from another, completely different
mechanism which may be equivalently termed ‘Wiener
process’, ‘random walk’, or ‘diffusion’.

2 Basic assumptions

In the present note, interactions between molecular spins
are ignored. The square root law (1) is shown to arise
from hyperfine interactions only if nuclear spin relaxation
is very slow. If it is not so slow, our results are different
from those of Miyashita and Saito.

A simplified model will be used. The assumptions are
the following:

1) Interactions between molecular spins are neglected,
∆Hz(t) is the hyperfine field.

2) The hyperfine field ∆Hz(t) is a sum of independent
random components Hz

i (t) which can take (2Ii+1) dif-
ferent values with a definite probability per unit time
of jumping from one value to the other. The index i
labels the various nuclear spins.

3) The number of nuclear spins interacting with a given
molecular spin S is large.

4) Each molecular spin has a probability λ per unit time
to relax when the local field Hz(t) = Hext + ∆Hz(t)
acting on this spin is comprised between H1 − ε and
H1 + ε, where

ε � �ωT /(gµBs), (3)

otherwise there is no relaxation. The value of λ is ex-
pected to depend on the tunnel splitting, hyperfine
field and nuclear spin dynamics.

An extreme case is when a molecular spin has com-
pletely relaxed at time t if, and only if, the local field
Hz(t) = Hext + ∆Hz(t) acting on this spin has been equal
to H1 at some time t′ between 0 and t. This limiting case
will be called ‘very slow nuclear relaxation’.

Assumption (1) is not claimed to be a good approxi-
mation, but a simplification consistent with our purpose,
to investigate

√
t relaxation arising from hyperfine inter-

actions only.
Assumption (2) implies that quantum coherence is lost

after a short time. It is an oversimplification with respect
to the real mechanism of nuclear relaxation. In Mn12 be-
low about 0.1 K, this mechanism seems to be complex,
involving inhomogeneities of the crystal [8].

Assumption (3) is physically realistic since dipole in-
teractions are long ranged.

Assumption (4) is appropriate when H1 �= 0, so a spin
can tunnel from the lowest state of its initial well to an
excited state of the other well, where it deexcites with
phonon emission. In the case H1 = 0, tunnelling takes
place between the lowest states of each well and phonons
have no effect. Then assumption (4) must be reformulated.
This will be done in a separate section.

3 Analogy with a random walk

According to assumption (4) the magnetization at time
t depends on the probability p(h, t) that the hyperfine
field Hz(t′) has taken the value H1 for 0 < t′ < t if the
initial field was Hz(0) = h. The field Hz is the sum of
contributions Hz

i of many nuclei. According to assump-
tion (2), these nuclei flip by random, uncorrelated jumps.
Thus, they are similar to the steps of a random walker. In
the simplest case, the random walker has the same prob-
ability to go forward or backward. Then, the probability1

ρ(h, h′, t) that a random walker is at ∆Hz = h′ at time t if
he started from h at time 0 satisfies the diffusion equation

∂

∂t
ρ(h, h′, t) = D(h′)

∂2

∂h′2 ρ(h, h′, t) (4)

where D is related to the relaxation time of nuclear spins.
It will generally be assumed to be independent of h′. Then
the solution of equation (4) is

ρ(h, h′, t) =
1

2
√

πDt
exp

−(h − h′)2

4Dt
. (5)

Formulae (4) and (5) are not valid for long times. In-
deed the field distribution g(∆Hz) has a finite width
∆H (Fig. 1), so that the random walker cannot reach
fields higher than ∆H . This can be accounted for by a
force f(h′). The diffusion equation is thus replaced by the
Fokker-Planck equation

∂

∂t
ρ(h, h′, t) =

∂

∂h′

{
D (h′)

[
∂

∂h′ ρ(h, h′, t) − f(h′)ρ(h, h′, t)
]}

(6)

which describes an Ornstein-Uhlenbeck process [7]. The
force is easy to calculate by writing the equilibrium con-
dition ρ(h, h′,∞) = g(h′). It follows

f(h) =
d

dh
ln g(h). (7)

If g(h) is a gaussian, g(h) = (2π)−1/2∆H−1 exp
[−h2/(2∆H2)] then f(h) = −h/∆H2.

For short times, formulae (4) and (5) are still correct
in the presence of the force f(h). Indeed, the displacement
of the random walker is the sum of a random part, of the
order of

√
Dt, and a drift part Df(h)t � −Dht/∆H2. The

former dominates the latter for short times.
1 To simplify the language, the word ‘probability’ will often

be used instead of ‘density of probability’. The actual meaning
is clear from the formulae.
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Fig. 1. The thick curve shows the hyperfine field distribution
g(∆Hz). The thin curve shows a possible evolution with time
t of the hyperfine field ∆Hz on a particular molecular spin S.

4 Very slow nuclear spin relaxation

The resonance condition |Hz(t)−H1| < ε is satisfied dur-
ing a time of the order of ε2/D. The flipping probability of
a molecular spin during this time is λε2/D. If this quan-
tity is of order unity or larger, the nuclear relaxation will
be said to be ‘very slow’. In that case, the proportion n(t)
of relaxed spins at time t is

n(t) = δMz(t)/δMz(∞) =∫ ∞

−∞
dhg(h)

∫ ∞

−∞
dh′p1(h1, h, h′, t) (8)

where p(h1; h, h′, t) is the probability that the random
walker, who started from h at time 0, is at h′ at time
t and has reached h1 = H1−Hext at some time t′ between
0 and t. It is related to ρ(h, h′, t) by
⎧⎨
⎩

p1(h1; h, h′, t) = ρ(h, h′, t) if (h − h1)(h′ − h1) < 0 (a)

p1(h1; h, h′, t)=ρ(2h1−h, h′, t) if (h−h1)(h′−h1)>0. (b)
(9)

Relation (9a) is obvious and (9b) can easily be derived, or
found in textbooks [9].

The integrand in equation (8) is very small un-
less h − h1 and h′ − h1 are of the order of

√
Dt or

smaller. In that domain the integrand is of the order of
1/

√
Dt. It follows that δM(t) ∼ √

Dt in agreement with
equation (1). The detailed calculation, based on equa-
tions (8, 9) and (5), yields

A = 8g(h1)
√

D/π

∫ ∞

0

dx

∫ ∞

0

dy exp
[−(x + y)2

]
. (10)

There is no relaxation if |h1| > ∆H (if resonances other
than at H1 are excluded). The maximum value of A (ob-

tained for h1 = 0) is of the order of 1/
√

τH where

τH = ∆H2/D (11)

is the longitudinal nuclear spin relaxation time. The nota-
tion T1 has been avoided because it usually designates the
spin-lattice relaxation time, related to spin-phonon inter-
actions, which is extremely long at low temperature. The
notation T2 has also been avoided because it usually des-
ignates the transverse nuclear spin relaxation time.

5 Moderately slow nuclear spin relaxation

The nuclear spin relaxation will be called moderately slow
when the relaxation of a molecular, electronic spin requires
that (H1 − Hz) vanishes several times, but is already al-
most complete (at resonance, i.e. h1 = 0) at t = τH .

A qualitative description will be given in the case
h1 = H1 −Hext = 0. As seen from (5), the random walker
explores in the time t a field interval δh(t) � √

Dt. The
proportion of field values which have been explored at
time t is thus

p(t) � δh(t)/∆H. (12)

This quantity p(t) is also the proportion of molecular spins
which have a chance to relax during the time t. For such
a spin, tunneling is allowed during a time

teff � εt/δh(t) � ε
√

t/D. (13)

For a spin whose local field lies in the explored region
δh(t), the relative magnetization change, for short times,
is λteff , and this evaluation is correct if λteff < 1. The
total relative magnetization change is for such times

δMz(t)/δMz(∞) = p(t)λteff

or, according to equations (12) and (13),

δMz(t)/δMz(∞) � λεt/∆H. (14)

This formula is different from that written by Miyashita
and Saito, who assume h = h1 at t = 0, so that p(t) is
replaced by 1 in equation (14), and the quantity they cal-
culate is actually λteff , which is proportional to

√
t as seen

from equation (13), Therefore, they predict δMz(t) ∼
√

t.
An expression of the maximum relaxation rate λ

can be extracted from the equations of Miyashita and
Saito. Indeed they find (this is their formula 3.9)
λteff � α�

2ω2
T

√
t/D where α is a constant quantity. Iden-

tifying this expression of λteff with that which can be de-
rived from equations (13) and (3), one obtains

λ = ωT τX (15)

where τX = α�gµBs is a constant time. Thus, Miyashita
and Saito find that λ is independent of D and ∆H . This
surprising result is based on the assumption of a fairly fast
nuclear spin relaxation, and on the statement that “the
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velocity of the field is proportional to
√

D”. This point
will not be discussed here.

When t becomes so large that λteff > 1, the depolar-
ization for an ‘explored’ field value is almost total and the
average relative demagnetisation is δMz(t)/δMz(∞) =
p(t) � √

Dt/∆H =
√

tτH as in the case of very slow nu-
clear relaxation. This result holds if |h1| is appreciably
smaller than ∆H . When |h1| approaches ∆H , the rate of
change of the magnetisation can easily be shown to de-
crease to 0.

6 Long times

For times t � τH , the random walker has lost the mem-
ory of its initial position h. Thus, to quote Miyashita
and Saito, “the number of crossings” [of Hz(t) with H1

per unit time] “is ... constant in time, which causes a
constant rate relaxation, i.e., the exponential relaxation”.
Two remarks should be added. First, the electronic spin
relaxation time τ obviously depends on h1 = H1 − Hext.
Miyashita and Saito made detailed numerical studies, but
only in the case of an external field tuned at resonance,
h1 = 0. When h1 �= 0 becomes larger than the width
∆H , τ obviously goes to ∞. The second remark is that,
in the case of very slow or moderately slow nuclear spin
resonance, which is addressed in the present note, the elec-
tronic spin relaxation is already very strong at t = τH , i.e.
δM(τH)/δM(∞) is of order unity. This implies that the
exponentially relaxing part is small.

7 The case H1 = 0

In most of the experiments done so far, H1 = 0, i.e.
tunnelling takes place between the lowest state of each
well. This case is peculiar. 1) The main feature is that (if
phonons are completely ignored) the system of electronic
and nuclear spins ignore the temperature T of the crystal,
and relax to an equilibrium state which generally corre-
sponds to another temperature Teff . Indeed, only a part
of the Zeeman energy of the molecular spins can be trans-
ferred to nuclear degrees of freedom. Only for Hext = 0,
when the Zeeman energy vanishes, Teff = T ; 2) if nu-
clear spin relaxation is not very slow, the above treatment
is still acceptable for short times, because spin reversal
and relaxation are nearly the same thing; 3) let the case
of very slow nuclear spin relaxation be discussed. Then,
when the hyperfine field ∆Hz crosses the value −Hext, Sz

follows the field adiabatically and changes sign. Thus, if
Sz(0) = s then Sz(t) = s if (h − h1) and (h′ − h1) have
the same sign, while Sz(t) = −s if they have a different
sign. Thus, the spin never loses the memory of its initial
state, which is quite unusual in a relaxation processs. For
short times, formula (1) can then be derived from an ar-
gument similar, but not identical to the above one, and
A turns out to be given by equation (10) again. For long
times, the hyperfine field distribution is probably affected
by relaxation and depends on time.

8 Validity of the very slow nuclear relaxation
scheme

For a spin able to tunnel between two localized states |−〉
and |+〉, the wave function x(t)|+〉 + y(t)|−〉 satisfies

ẋ(t) =
1
i�

x(t)E(+)(t) − iωT y(t);

ẏ(t) = −iωT x(t) +
1
i�

y(t)E(−)(t) (16)

where the unperturbed energies E(±)(t) satisfy E(−)(t)−
E(+)(t) = 2gµB[Hz(t) − H1]s.

Equation simplifies if one introduces the notations
u(t) = (1/�)

∫ t

t0
dt′E(+)(t′), w(t) = 1

�

∫ t

t0
dt′E(−)(t′),

x(t) = exp[−iu(t)]X(t), and y(t) = exp[−iw(t)]Y (t).
Moreover, the initial condition X(0) = 1 will be assumed,
and the time will be assumed so short that X(t) may be
approximated by X(0) = 1. Then equation (16) yields
Ẏ (t) = −iωT exp[−iU(t)] where

U(t) = (2gµBs/�)
∫ t

t0

dt′[Hz(t′) − H1]. (17)

Let the initial value of the local field be tuned so as to
allow tunnelling. If the tunnelling window remains open
until a time of the order of the tunnel period 1/ωT , nuclear
relaxation is very slow in the sense defined above. The
condition for very slow relaxation is thus U(1/ωT ) < 1.
According to equation (17), U(t) can be roughly evaluated
as the product of (2gµBs/�) by

√
Dt = ∆H

√
t/τH and a

factor t because of the integration. The condition for very
slow relaxation reads

2gµBs∆H

�ωT
√

ωT τH
< 1. (18)

The hyperfine width ∆H is never smaller than 0.001 Tesla.
Thus, equation (18) requires large values of τH and ωT .
For instance, a nuclear relaxation time τH = 1 s implies
ωT ≥ 106 s−1.

An additional condition is ωT τH > 1, but condi-
tion (18) is probably stronger.

Usual nuclear spin-lattice relaxation is expected to be
extremely slow at low temperature. However, measure-
ments by Morello et al. [8] in Mn12ac reveal that τH does
not increase beyond about 0.01 second. The zero field tun-
nel splitting of the ground doublet does not seem to satisfy
the requirement ωT τH > 1 (Barbara, private communica-
tion). Thus, nuclear spin relaxation is not very slow and
therefore the hyperfine field is not expected to give rise to√

t relaxation in zero external field in Mn12ac, but rather
to exponential relaxation.

It is of interest to recall that square root relaxation has
been observed in Fe8 on times of the order of a minute.
The nuclear spin lattice relaxation times T1 which have
been reported (for instance when observing negative spin
temperatures [10]) are of the same order of magnitude,
but it is not clear whether so long nuclear longitudinal re-
laxation times can be reached in molecular nanomagnets.
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9 Real systems: effect of dipole interactions

In real systems, dipole interactions between molecular
spins are present and contribute to the local field by an
amount which will be called ‘dipole field’. This contri-
bution adds to the hyperfine field addressed above. To-
tal magnetic relaxation requires that the dipole field, as
well as the hyperfine field, explores the whole allowed re-
gion. In Fe8, the dipole field created by electronic spins is
about 10 times as large as the hyperfine field, and there-
fore 90% of the relaxation cannot be explained by the
Miyashita-Saito mechanism described above, but only by
the Prokofiev-Stamp mechanism.

10 Conclusion

In the present work it is shown that the
√

t behaviour can
in principle arise from hyperfine interactions alone. This
can happen for any value of the external field and for any
initial state provided it is not the equilibrium state. How-
ever, very slow nuclear spin relaxation is necessary. In the
case of moderately slow nuclear spin relaxation, the decay
is found to be linear at short times, in contrast with the
statements of Miyashita and Saito. This discrepancy oc-
curs because Miyashita and Saito assumed the initial con-
dition h = h1 which is not fulfilled by nuclear spins. After
some time the decay crosses over to the

√
t behaviour and

finally becomes exponential at long times. The constant
A of formula (1), and the relaxation rate 1/τ which de-
scribes the long time behaviour, go to 0 when the tuning
parameter (Hext − H1) becomes large with respect to the
hyperfine width ∆H .

When H1 = 0 and Hext � 0, spin relaxation has re-
markable features when the spin-lattice relaxation time is
very long. The spin temperature can then be quite differ-
ent from the lattice temperature.

The present work contains several shortcomings.
The possibility of simultaneous reversal of the electronic
spin and a few nuclear spins has been disregarded. Such
processes have been treated by Prokofiev and Stamp [11]
in the case of superparamagnetic grains. They might be

less crucial for molecular nanomagnets since each molec-
ular spin interacts in a significant way with a restricted
number of nuclear spins. On the other hand, the possible
dependence of D and λ with respect to the local field has
also been ignored (as in the work of Miyashita and Saito).
Such a dependence would modify the value (10) of the
coefficient A.

The present theory may be relevant, for instance, in
two cases. i) Mn12ac if a transverse field is applied in order
to increase ωT and to fulfill the condition (18) of very slow
nuclear spin relaxation; ii) diluted samples of Fe8, where
the dipole interaction between molecular spins is smaller
than the hyperfine field.

I acknowledge precious informations from Bernard Barbara,
Claude Berthier, Eugene Chudnovsky, Bernard Derrida, Julio
Fernández, Maurice Goldman and Wolfgang Wernsdorfer.
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